請問大家專升本考函數(shù)的漸近線嗎?

瀏覽次數(shù):次 發(fā)布時間:2021-10-28
請問專升本考函數(shù)的漸近線嗎?有點困擾,在線等,感謝大家??!

回答

疑問,跟樓主一樣,坐等回復~~

回答1

(高等數(shù)學)函數(shù)漸近線的求法

回答2

專升本《高等數(shù)學》考試大綱 考試要求 考生應按本大綱的要求,掌握“高等數(shù)學”中函數(shù)、極限和連續(xù)、一元函數(shù)微分學、一元函數(shù)積分學、無窮級數(shù)、常微分方程、向量代數(shù)與空間解析幾何的基本概念、基本理論和基本方法,考生應注意各部分知識的結構及知識的聯(lián)系;具有一定的抽象思維能力、邏輯推理能力、運算能力和空間想象能力;能運用基本概念、基本理論和基本方法進行推理、證明和計算;能運用所學知識分析并解決一些簡單的實際問題。 考試內(nèi)容一、函數(shù)、極限和連續(xù) (一)函數(shù) 1.理解函數(shù)的概念,會求函數(shù)的定義域、表達式及函數(shù)值,會作出一些簡單的分段函數(shù)圖像。 2.掌握函數(shù)的單調(diào)性、奇偶性、有界性和周期性。 3.理解函數(shù)y =ƒ(x)與其反函數(shù)y =ƒ-1(x)之間的關系(定義域、值域、圖像),會求單調(diào)函數(shù)的反函數(shù)。 4.掌握函數(shù)的四則運算與復合運算;掌握復合函數(shù)的復合過程。 5.掌握基本初等函數(shù)的性質及其圖像。 6.理解初等函數(shù)的概念。 7.會建立一些簡單實際問題的函數(shù)關系式。  (二)極限 1.理解極限的概念(只要求極限的描述性定義),能根據(jù)極限概念描述函數(shù)的變化趨勢。理解函數(shù)在一點處極限存在的充分必要條件,會求函數(shù)在一點處的左極限與右極限。 2.理解極限的唯一性、有界性和保號性,掌握極限的四則運算法則。 3.理解無窮小量、無窮大量的概念,掌握無窮小量的性質,無窮小量與無窮大量的關系。會比較無窮小量的階(高階、低階、同階和等價)。會運用等價無窮小量替換求極限。 4.理解極限存在的兩個收斂準則(夾逼準則與單調(diào)有界準則),掌握兩個重要極限: 并能用這兩個重要極限求函數(shù)的極限。(三)連續(xù) 1.理解函數(shù)在一點處連續(xù)的概念,函數(shù)在一點處連續(xù)與函數(shù)在該點處極限存在的關系。會判斷分段函數(shù)在分段點的連續(xù)性。 2.理解函數(shù)在一點處間斷的概念,會求函數(shù)的間斷點,并會判斷間斷點的類型。 3.理解“一切初等函數(shù)在其定義區(qū)間上都是連續(xù)的”,并會利用初等函數(shù)的連續(xù)性求函數(shù)的極限。 4.掌握閉區(qū)間上連續(xù)函數(shù)的性質:最值定理(有界性定理),介值定理(零點存在定理)。會運用介值定理推證一些簡單命題。  二、一元函數(shù)微分學 (一)導數(shù)與微分 1.理解導數(shù)的概念及其幾何意義,了解左導數(shù)與右導數(shù)的定義,理解函數(shù)的可導性與連續(xù)性的關系,會用定義求函數(shù)在一點處的導數(shù)。 2.會求曲線上一點處的切線方程與法線方程。 3.熟記導數(shù)的基本公式,會運用函數(shù)的四則運算求導法則,復合函數(shù)求導法則和反函數(shù)求導法則求導數(shù)。會求分段函數(shù)的導數(shù)。 4.會求隱函數(shù)的導數(shù)。掌握對數(shù)求導法與參數(shù)方程求導法。 5.理解高階導數(shù)的概念,會求一些簡單的函數(shù)的n階導數(shù)。 6.理解函數(shù)微分的概念,掌握微分運算法則與一階微分形式不變性,理解可微與可導的關系,會求函數(shù)的一階微分。 (二)中值定理及導數(shù)的應用 1.理解羅爾(Rolle)中值定理、拉格朗日(Lagrange)中值定理及它們的幾何意義,理解柯西(Cauchy)中值定理、泰勒(Taylor)中值定理。會用羅爾中值定理證明方程根的存在性。會用拉格朗日中值定理證明一些簡單的不等式。 2.掌握洛必達(L’Hospital)法則,會用洛必達法則求型未定式的極限。 3.會利用導數(shù)判定函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,會利用函數(shù)的單調(diào)性證明一些簡單的不等式。 4.理解函數(shù)極值的概念,會求函數(shù)的極值和最值,會解決一些簡單的應用問題。 5.會判定曲線的凹凸性,會求曲線的拐點。 6.會求曲線的漸近線(水平漸近線、垂直漸近線和斜漸近線)。 7.會描繪一些簡單的函數(shù)的圖形。  三、一元函數(shù)積分學 (一)不定積分 1.理解原函數(shù)與不定積分的概念及其關系,理解原函數(shù)存在定理,掌握不定積分的性質。 2.熟記基本不定積分公式。 3.掌握不定積分的第一類換元法(“湊”微分法),第二類換元法(限于三角換元與一些簡單的根式換元)。 4.掌握不定積分的分部積分法。 5.會求一些簡單的有理函數(shù)的不定積分。 (二)定積分 1.理解定積分的概念與幾何意義, 掌握定積分的基本性質。 2.理解變限積分函數(shù)的概念,掌握變限積分函數(shù)求導的方法。 3.掌握牛頓—萊布尼茨(Newton—Leibniz)公式。 4.掌握定積分的換元積分法與分部積分法。 5.理解無窮區(qū)間上有界函數(shù)的廣義積分與有限區(qū)間上無界函數(shù)的瑕積分的概念,掌握其計算方法。 6.會用定積分計算平面圖形的面積以及平面圖形繞坐標軸旋轉一周所得的旋轉體的體積。  四、無窮級數(shù) (一)數(shù)項級數(shù) 1.理解級數(shù)收斂、級數(shù)發(fā)散的概念和級數(shù)的基本性質,掌握級數(shù)收斂的必要條件。 2.熟記幾何級數(shù),調(diào)和級數(shù)和p—級數(shù)的斂散性。會用正項級數(shù)的比較審斂法與比值審斂法判別正項級數(shù)的斂散性。 3.理解任意項級數(shù)絕對收斂與條件收斂的概念。會用萊布尼茨(Leibnitz) 判別法判別交錯級數(shù)的斂散性。 (二)冪級數(shù) 1.理解冪級數(shù)、冪級數(shù)收斂及和函數(shù)的概念。會求冪級數(shù)的收斂半徑與收斂區(qū)間。 2.掌握冪級數(shù)和、差、積的運算。 3.掌握冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質:和函數(shù)是連續(xù)的、和函數(shù)可逐項求導及和函數(shù)可逐項積分。 4.熟記ex,sinx,cosx,ln(1+x),1/(1-x)的麥克勞林(Maclaurin)級數(shù),會將一些簡單的初等函數(shù)展開為x-x0的冪級數(shù)。  五、常微分方程 (一)一階常微分方程 1.理解常微分方程的概念,理解常微分方程的階、解、通解、初始條件和特解的概念。 2.掌握可分離變量微分方程與齊次方程的解法。 3.會求解一階線性微分方程。 (二)二階常系數(shù)線性微分方程 1.理解二階常系數(shù)線性微分方程解的結構。 2.會求解二階常系數(shù)齊次線性微分方程。 3.會求解二階常系數(shù)非齊次線性微分方程(非齊次項限定為:(Ⅰ) f(x)=pn(x)eλx 六、向量代數(shù)與空間解析幾何 (一)向量代數(shù) 1.理解向量的概念,掌握向量的表示法,會求向量的模、非零向量的方向余弦和非零向量在軸上的投影。 2.掌握向量的線性運算(加法運算與數(shù)量乘法運算),會求向量的數(shù)量積與向量積。 3.會求兩個非零向量的夾角,掌握兩個非零向量平行、垂直的充分必要條件。 (二)平面與直線 1.會求平面的點法式方程與一般式方程。會判定兩個平面的位置關系。 2.會求點到平面的距離。 3.會求直線的點向式方程、一般式方程和參數(shù)式方程。會判定兩條直線的位置關系。 4.會求點到直線的距離,兩條異面直線之間的距離。 5.會判定直線與平面的位置關系。  試卷結構 試卷總分:150分 考試時間:150分鐘 試卷內(nèi)容比例: 函數(shù)、極限和連續(xù)約20% 一元函數(shù)微分學約30% 一元函數(shù)積分學約30% 無窮級數(shù)、常微分方程約15% 向量代數(shù)與空間解析幾何約5% 試卷題型分值分布: 選擇題共 5題,每小題 4 分,總分20分; 填空題共10題,每小題 4 分,總分40分; 計算題共 8題,    總分60分; 綜合題共 3題,每小題10分,總分30分。

回答3

水平:x趨向于正無窮或負無窮時,y去向于常數(shù)a,則y=a是水平漸近線垂直:x趨向于b時,y趨向于無窮,則x=b是垂直漸近線斜:當x趨向于無窮時,函數(shù)y=f(x)無限接近一條固定直線y=Ax+B,即斜漸近線具體求法:x趨向于無窮時,limy/x=A,lim[y-Ax]=B,則有y=Ax+B是斜漸近線漸近線是指:曲線上一點M沿曲線無限遠離原點或無限接近間斷點時,如果M到一條直線的距離無限趨近于零,那么這條直線稱為這條曲線的漸近線。

回答4

2010《高等數(shù)學》考試大綱I. 考試要求適用專業(yè): “ 2 + 2 ” 招生文理各專業(yè)《 高等數(shù)學 》 考試大綱包含微積分、線性代數(shù)和概率論三個部分,考試的具體要求依次為了解、理解和掌握、靈活和綜合運用三個層次。1. 了解:要求對所列知識的含義有基本的認識,知道這一知識內(nèi)容是什么,并在有關的問題中識別它。2. 理解和掌握:要求對所列知識內(nèi)容有較深刻的理論認識,能夠利用知識解決有關問題。3. 靈活和綜合運用:要求系統(tǒng)地掌握知識的內(nèi)在聯(lián)系,能運用所列知識分析和解決較為復雜的或綜合性的問題。II. 大綱內(nèi)容《微積分》部分一、函數(shù)、極限、連續(xù)考試內(nèi)容:函數(shù)的概念及其表示法/函數(shù)的有界性、單調(diào)性、周期性和奇偶性/反函數(shù)、復合函數(shù)、隱函數(shù)、分段函數(shù)/基本初等函數(shù)的性質及圖形/初等函數(shù)/應用問題的函數(shù)關系的建立/數(shù)列極限與函數(shù)極限的概念/函數(shù)的左極限和右極限/無窮小和無窮大的概念及其關系/無窮小的基本性質及無窮小的比較/極限四則運算/兩個重要極限/函數(shù)連續(xù)的概念/函數(shù)間斷點的類型/初等函數(shù)的連續(xù)性/閉區(qū)間上連續(xù)函數(shù)的性質考試要求:1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應用問題中的函數(shù)關系式。2.理解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。3.理解復合函數(shù)、反函數(shù)、隱函數(shù)和分段函數(shù)的概念。4.掌握基本初等函數(shù)的性質及其圖形,理解初等函數(shù)的概念。5.了解數(shù)列極限和函數(shù)極限(包括左、右極限)的概念以及函數(shù)極限與左、右極限之間的關系。6.掌握極限存在時函數(shù)的性質與函數(shù)極限的四則運算和復合運算法則。掌握利用兩個重要極限求極限的方法。7.理解無窮小、無窮大的概念和基本性質,掌握無窮小的階的比較方法。8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點的類型。9.了解連續(xù)函數(shù)的性質和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(有界性、最大值與最小值定理和介值定理)并掌握應用這些性質進行相關證明題論證的方法。二、一元函數(shù)微分學考試內(nèi)容導數(shù)和微分的概念/導數(shù)的幾何意義/函數(shù)的可導性與連續(xù)性之間的關系/導數(shù)的四則運算法則/基本初等函數(shù)的導數(shù)/復合函數(shù)的求導法則/反函數(shù)和隱函數(shù)的求導法則/高階導數(shù)/某些簡單函數(shù)的n 階導數(shù)/微分中值定理及其應用/洛必達法則/函數(shù)單調(diào)性/函數(shù)的極值/函數(shù)圖形的凹凸性、拐點/函數(shù)斜漸近線和鉛直漸近線/函數(shù)圖形的描繪/函數(shù)的最大值與最小值考試要求1.理解導數(shù)的概念及可導性與連續(xù)性之間的關系,了解導數(shù)的幾何意義,會求平面曲線的切線方程。2. 掌握用定義法求函數(shù)導數(shù)值;熟練掌握基本初等函數(shù)的導數(shù)公式、導數(shù)的四則運算法則及復合函數(shù)的求導法則;熟練掌握反函數(shù)與隱函數(shù)求導法則以及對數(shù)求導法則。3.了解高階導數(shù)的概念,會求二階、三階導數(shù)及簡單函數(shù)的n 階導數(shù)。4.會求分段函數(shù)在分段點上的一階導數(shù)值。5.理解微分的概念,導數(shù)與微分之間的關系。6.理解羅爾中值定理、拉格朗日中值定理、柯西中值定理的條件和結論,掌握這三個定理的應用及相關證明題論證的方法。8.熟練掌握洛必達法則求不定式極限的方法。9. 熟練掌握函數(shù)單調(diào)性的判別方法及其應用,熟練掌握函數(shù)極值、最大值和最小值的求法(含應用題)。10. 熟練掌握函數(shù)曲線凹凸性和拐點的判別方法,以及函數(shù)曲線的斜漸近線和鉛直漸近線的求法。11.掌握函數(shù)作圖的基本步驟和方法,會作某些簡單函數(shù)的圖形。三、一元函數(shù)積分學考試內(nèi)容原函數(shù)與不定積分的概念/不定積分的基本性質/基本積分公式/不定積分的換元積分法和分部積分法/定積分的概念和基本性質/積分中值定理/變上限積分函數(shù)及其導數(shù)/牛頓一萊布尼茨公式/定積分的換元積分法和分部積分法/廣義積分的概念和計算/定積分的應用考試要求1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質和基本積分公式;熟練掌握計算不定積分的換元積分法和分部積分法。2.了解定積分的概念和基本性質。熟練掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法。熟練掌握變上限積分函數(shù)的求導公式和含有此類函數(shù)的復合求導公式。4.掌握利用定積分計算平面圖形的面積和繞x軸、繞y軸而成的旋轉體體積的方法,會利用定積分計算函數(shù)的平均值。5.了解廣義積分收斂與發(fā)散的概念和條件,掌握計算廣義積分的換元積分法和分部積分法。四、多元函數(shù)微積分學考試內(nèi)容多元函數(shù)的概念/二元函數(shù)的幾何意義/二元函數(shù)的極限和連續(xù)的概念/多元函數(shù)偏導數(shù)和全微分/全微分存在的必要條件和充分條件/多元復合函數(shù)、隱函數(shù)的求導法/二階偏導數(shù) /二元函數(shù)的二階泰勒公式/多元函數(shù)極值和條件極值/拉格朗日乘數(shù)法/多元函數(shù)的最大值和最小值問題及其簡單應用/二重積分的概念及性質/二重積分的計算考試要求1、理解多元函數(shù)的概念,理解二元函數(shù)的幾何意義。2、理解二元函數(shù)的極限與連續(xù)性的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質。3、理解多元函數(shù)偏導數(shù)和全微分的概念,會求全微分。4、熟練掌握多元復合函數(shù)一階、二階偏導數(shù)的求法。5、掌握二元隱函數(shù)的求導法則。6、了解二元函數(shù)的二階泰勒公式。7、理解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件和充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單二元函數(shù)的最大值和最小值,熟練掌握求解無條件最值或條件最值應用問題的方法。8、理解二重積分的概念,了解二重積分的性質。9、熟練掌握二重積分的計算方法(直角坐標、極坐標)。五、無窮級數(shù)考試內(nèi)容常數(shù)項級數(shù)的收斂與發(fā)散的概念/收斂級數(shù)的概念/級數(shù)和的概念/級數(shù)的基本性質與收斂的必要條件/幾何級數(shù)與P級數(shù)及其收斂性/正項級數(shù)收斂性的判別法/交錯級數(shù)與萊布尼茨定理/任意項級數(shù)的絕對收斂與條件收斂/函數(shù)項級數(shù)的收斂域與和函數(shù)的概念/函數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域/冪級數(shù)的和函數(shù)/冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質/簡單冪級數(shù)的和函數(shù)的求法/初等函數(shù)的冪級數(shù)展開式??荚囈?、理解常數(shù)項級數(shù)收斂、發(fā)散以及收斂級數(shù)的和概念,掌握級數(shù)的基本性質及收斂的必要條件。2、掌握幾何級數(shù)與P級數(shù)的收斂與發(fā)散的條件。3、掌握正項級數(shù)收斂性的比較判別法和比值判別法。4、掌握交錯級數(shù)的萊布尼茨判別法。5、掌握任意項級數(shù)絕對收斂與條件收斂的概念,以及絕對收斂與收斂的關系。6、了解函數(shù)項級數(shù)的收斂域及和函數(shù)的概念。7、理解冪級數(shù)收斂半徑的概念,并掌握冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域的求法。8、了解冪級數(shù)在其收斂區(qū)間內(nèi)的一些基本性質(和函數(shù)的連續(xù)性、逐項微分和逐項積分),會求簡單冪級數(shù)在收斂區(qū)間內(nèi)的和函數(shù),并由此求出常數(shù)項級數(shù)的和。9、了解函數(shù)展開為泰勒級數(shù)的必要條件。10、掌握 α 的麥克勞林展開式。會用它們將一些簡單函數(shù)間接展開成冪級數(shù)。六、常微分方程考試內(nèi)容常微分方程的基本概念/變量可分離的微分方程/齊次微分方程/一階線性微分方程/伯努方程 /線性微分方程解的性質及解的結構定理/二階常系數(shù)齊次線性微分方程/簡單的二階常系數(shù)非齊次線性微分方程/微分方程的簡單應用??荚囈?、了解微分方程及其解、階、通解、初始條件和特解等概念。2、掌握變量可分離的微分方程及一階線性微分方程的解法。3、掌握齊次微分方程、伯努利方程的解法。4、理解線性微分方程解的性質及解的結構定理。5、掌握二階常系數(shù)齊次線性微分方程的解法。6、會解自由項為多項式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)的二階常系數(shù)非齊次線性微分方程?!毒€性代數(shù)》部分一、行列式考試內(nèi)容行列式的概念和基本性質 / 行列式按行(列)展開定理考試要求1.了解行列式的概念,掌握行列式的性質。2.會應用行列式的性質和行列式按行(列)展開定理計算行列式。二、矩陣考試內(nèi)容矩陣的概念 / 矩陣的線性運算 / 矩陣的乘法 / 方陣的冪 / 方陣乘積的行列式 / 矩陣的轉置 / 逆矩陣的概念和性質 / 矩陣可逆的充分必要條件 / 伴隨矩陣 / 矩陣的初等變換 / 初等矩陣 / 矩陣的秩 / 矩陣的等價 / 分塊矩陣及其運算考試要求1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣,以及它們的性質。2.掌握矩陣的線性運算、乘法、轉置,以及它們的運算規(guī)律,了解方陣的冪與方陣乘積的行列式。3.理解逆矩陣的概念,掌握逆矩陣的性質,以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣。4.掌握矩陣的初等變換,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,熟練掌握用初等變換求矩陣的秩和逆矩陣的方法。5.了解分塊矩陣及其運算。三、向量考試內(nèi)容向量的概念 / 向量的線性組合和線性表示 / 向量組的線性相關與線性無關 / 向量組的極大線性無關組 / 等價向量組 / 向量組的秩 / 向量組的秩與矩陣的秩之間的關系 / 線性無關向量組的正交規(guī)范化方法 / 規(guī)范正交基 / 正交矩陣及其性質考試要求1. 理解n維向量、向量的線性組合與線性表示的概念。2. 理解向量組線性相關、線性無關的定義,理解向量組線性相關、線性無關的有關性質并會對向量組進行線性相關、線性無關的判別。3. 了解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩。4. 了解向量組等價的概念,以及向量組的秩與矩陣秩的關系。5. 掌握線性無關向量組正交規(guī)范化的施密特方法。6. 了解正交矩陣的概念,以及它們的性質。四、線性方程組考試內(nèi)容線性方程組的克萊姆法則 / 齊次線性方程組有非零解的充分必要條件 / 非齊次線性方程組有解的充分必要條件 / 線性方程組解的性質和解的結構 / 齊次線性方程組的基礎解系和通解 / 非齊次線性方程組的通解考試要求1. 會用克萊姆法則。2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件。3.理解齊次線性方程組的基礎解系、通解的概念,熟練掌握齊次線方程組的基礎解系和通解的求法。4.理解非齊次線性方程組解的結構及通解的概念,熟練掌握非齊次線方程組通解的求法。5.掌握用初等行變換求解線性方程組的方法。五、矩陣的特征值和特征向量考試內(nèi)容矩陣的特征值和特征向量的概念、性質 / 相似變換、相似矩陣的概念及性質 / 矩陣可相似對角化的充分必要條件及相似對角矩陣 / 實對稱矩陣的特征值、特征向量及相似對角矩陣考試要求1. 理解矩陣的特征值和特征向量的概念及性質,掌握求矩陣的特征值和特征向量的方法。2. 理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,掌握將矩陣化為與之相似的對角矩陣的方法。3. 了解實對稱矩陣的特征值和特征向量的性質。六、二次型考試內(nèi)容二次型及其矩陣表示 / 合同變換與合同矩陣 / 二次型的秩 / 慣性定理 /二次型的標準型和規(guī)范形 / 用正交變換和配方法化二次型為標準形 / 二次型及其矩陣的正定性考試要求1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換和合同矩陣的概念,了解二次型的標準形、規(guī)范形的概念以及慣性定理。2. 掌握用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形。了解二次型和對應矩陣的正定性及其判別法。《概率論》部分一、隨機事件和概率考試內(nèi)容隨機事件與樣本空間 / 事件的關系與運算 / 完全事件組 / 概率的概念 /概率的基本性質 / 古典型概率 / 幾何型概率 / 條件概率 / 概率的基本公式 / 事件的獨立性 / 獨立重復試驗考試要求1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件間的關系及運算。2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,熟練掌握計算概率的加法公式、減法公式、乘法公式、全概率公式,以及貝葉斯公式等。3.理解事件獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法。二、隨機變量及其概率分布考試內(nèi)容隨機變量及其概率分布 / 隨機變量的分布函數(shù)的概念及其性質 / 離散型隨機變量的概率分布 / 連續(xù)型隨機變量的概率密度 / 常見隨機變量的概率分布 / 隨機變量函數(shù)的概率分布考試要求1.理解隨機變量及其概率分布的概念;理解隨機變量 X 的概率分布函數(shù) 的概念及性質;掌握計算與隨機變量相聯(lián)系的事件概率的方法。2.理解離散型隨機變量及其概率分布的概念,掌握0—1分布、二項分布、超幾何分布、泊松(Poisson)分布及其應用。3.掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布。4.理解連續(xù)型隨機變量及其概率密度的概念,熟悉均勻分布、正態(tài)分布 、指數(shù)分布的概率密度函數(shù),掌握利用均勻分布、正態(tài)分布 、指數(shù)分布等連續(xù)型隨機變量概率密度函數(shù)計算相關事件概率的應用問題。 6.掌握根據(jù)隨機變量的概率分布求其簡單函數(shù)隨機變量概率分布的方法。三、二維隨機變量及其聯(lián)合概率分布考試內(nèi)容二維隨機變量的聯(lián)合分布函數(shù) / 離散型二維隨機變量的聯(lián)合概率分布、邊緣分布和條件分布 / 連續(xù)型二維隨機變量的聯(lián)合概率密度、邊緣密度/ 隨機變量的獨立性和相關性 / 常見二維隨機變量的概率分布 / 兩個隨機變量的函數(shù)的概率分布考試要求1. 理解二維隨機變量的聯(lián)合分布函數(shù)的概念和基本性質。2. 理解二維隨機變量的聯(lián)合分布的概念、性質及其兩種基本表達形式:離散型二維隨機變量聯(lián)合概率分布和連續(xù)型二維隨機變量聯(lián)合概率密度。掌握已知兩個隨機變量的聯(lián)合分布時分別求它們的邊緣分布的方法。3. 理解隨機變量的獨立性和相關性的概念,掌握隨機變量獨立的條件;理解隨機變量的不相關性與獨立性的關系。4. 掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的概率意義。5. 掌握根據(jù)兩個隨機變量的聯(lián)合概率分布求其函數(shù)概率分布的方法。 四、隨機變量的數(shù)字特征考試內(nèi)容隨機變量的數(shù)學期望(均值)、方差、標準差及其性質 / 隨機變量函數(shù)的數(shù)學期望 / 矩、協(xié)方差、相關系數(shù)及其性質考試要求1.理解隨機變量數(shù)字特征(數(shù)學期望、方差、標準差、矩、協(xié)方差、相關系數(shù))的概念,并會運用數(shù)字特征的基本性質計算具體分布的數(shù)字特征,掌握常用分布的數(shù)字特征。2.掌握根據(jù)隨機變量的概率分布求其函數(shù)數(shù)學期望的方法;掌握根據(jù)兩個隨機變量聯(lián)合概率分布求其函數(shù)數(shù)學期望的方法。五、大數(shù)定律和中心極限定理考試內(nèi)容切比雪夫大數(shù)定律 / 伯努利大數(shù)定律 / 辛欽大數(shù)定律 / 棣莫弗—拉普拉斯定理 / 列維—林德伯格定理考試要求1.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨立同分布隨機變量的大數(shù)定律)成立的條件及結論。2.掌握棣莫弗—拉普拉斯中心極限定理(二項分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨立同分布隨機變量列的中心極限定理)的結論和應用條件,并會用相關定理近似計算有關事件的概率。III. 試卷形式及結構 試卷采用閉卷、筆試形式。全卷滿分為150 分,考試時間為 150 分鐘。試題分選擇題、填空題、計算題、應用題和證明題五種題型。選擇題是四選一型的單項選擇題;填空題只要直接填寫結果,不必寫出計算過程或推證過程;計算題、應用題和證明題均須寫出文字說明、演算步驟或推證過程。五種題型分值的百分比大致為:選擇、填空題 30 % 左右, 計算題 45 % 左右,應用題 17 % 左右, 證明題 8 % 左右。試卷中微積分、線性代數(shù)和概率論三大部分內(nèi)容的比例大致為:微積分 50 % ,線性代數(shù) 25 % , 概率論 25 % 。

回答5

垂直漸近線:就是指當x→C時,y→∞,一般來說,滿足分母為0的x的值C,就是所求的漸進線。x = C 就是垂直漸進線。水平漸近線:就是指在函數(shù)f(x)中,x→+∞或-∞時,y→c,y=c就是f(x)的水平漸近線。所以我們需要考慮的是x無限變大或者變小后,y的變化情況。斜漸近線:這種漸近線的形式為y=kx+b,反映函數(shù)在無窮遠點的性態(tài),先求k,k=limf(x)/x,再求b,b=limf(x)-kx。極限過程都是x趨向于無窮大綜上所述,我們在算漸近線的時候:1. 判斷其要求的是水平漸近線還是垂直漸近線。2. 垂直漸近線就是求出使得函數(shù)表達式無意義的x取值,即為所求垂直漸近線。3. 水平漸近線需要簡化等式,然后判斷隨著x的無限變大或變小,y值的變化情況。
湖南專升本最新資料領取

部分內(nèi)容來源于網(wǎng)絡轉載、學生投稿,如有侵權或對本站有任何意見、建議或者投訴,請聯(lián)系郵箱(1296178999@qq.com)反饋。 未經(jīng)本站授權,不得轉載、摘編、復制或者建立鏡像, 如有違反,本站將追究法律責任!


本文標簽: 專升本考函數(shù)的漸近線嗎

上一篇:請問大家統(tǒng)招專升本一年時間夠嗎?                  下一篇:請問大家2021年武漢專升本政策下了嗎?

湖南3+2 統(tǒng)招專升本

一鍵查詢