山東專升本高數(shù)考試大綱 山東專升本高數(shù)一二三的區(qū)別

瀏覽次數(shù):次 發(fā)布時(shí)間:2021-05-03

2020年,山東將修四門公共基礎(chǔ)課。分別是大學(xué)語文、計(jì)算機(jī)、英語(大學(xué)的公共外語課是非英語政治)和高等數(shù)學(xué)。高等數(shù)學(xué)分為高等數(shù)學(xué)ⅰ、高等數(shù)學(xué)ⅱ和高等數(shù)學(xué)ⅲ。山東專升本對(duì)專升本對(duì)專升本對(duì)專升本高一,二,三的區(qū)別?

山東省2020年普通高等教育高考

高等數(shù)學(xué)一級(jí)考試要求

ⅰ.考試內(nèi)容和要求

本科目考試要求考生掌握必要的基本概念、基本理論,以及更熟練的操作能力。它主要考察學(xué)生的記憶、理解和應(yīng)用能力,為進(jìn)一步學(xué)習(xí)奠定基礎(chǔ)。具體內(nèi)容和要求如下:

一、函數(shù)、極限和連續(xù)性

(a)職能

1.理解函數(shù)的概念,找到函數(shù)的定義域、表達(dá)式、函數(shù)值,建立應(yīng)用問題的函數(shù)關(guān)系。

2.理解和掌握函數(shù)的有界性、單調(diào)性、周期性和奇偶性。

3.理解分段函數(shù)和反函數(shù)的概念。

4.掌握函數(shù)的四則運(yùn)算和復(fù)合運(yùn)算。

5.理解和掌握基本初等函數(shù)的性質(zhì)和圖形,理解初等函數(shù)的概念。

(2)限制

  1.理解極限的概念,能根據(jù)極限概念描述函數(shù)的變化趨勢(shì)。理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系,x趨于無窮大

image.png時(shí)函數(shù)的極限。1.理解極限的概念,根據(jù)極限的概念描述函數(shù)的變化趨勢(shì)。理解函數(shù)左極限和右極限的概念,函數(shù)極限存在與左極限和右極限的關(guān)系,以及x趨于無窮時(shí)函數(shù)的極限
。

  2.了解極限的唯一性、有界性和保號(hào)性,掌握極限的四則運(yùn)算法則。理解極限存在的兩個(gè)收斂準(zhǔn)則(夾逼準(zhǔn)則與單調(diào)有界準(zhǔn)則),熟練掌握利用兩個(gè)重要極限

image.png求函數(shù)的極限。2.了解極限的唯一性、有界性、保數(shù)性,掌握極限的四種算法。了解極限存在的兩個(gè)收斂準(zhǔn)則(pinching準(zhǔn)則和單調(diào)有界準(zhǔn)則),掌握如何利用兩個(gè)重要的極限
求函數(shù)的極限。

3.理解無窮小量的概念,掌握無窮小量的性質(zhì)和無窮小量與無窮小量的關(guān)系。會(huì)比較無窮小量的階(高階、低階、同階、等價(jià))。會(huì)用等價(jià)無窮小來求極限。

(3)連續(xù)性

1.理解函數(shù)連續(xù)性(包括左連續(xù)性和右連續(xù)性)的概念,會(huì)區(qū)分函數(shù)不連續(xù)性的類型。

2.掌握連續(xù)函數(shù)的性質(zhì)。

3.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性定理、最大最小值定理、中間值定理),并應(yīng)用這些性質(zhì)。

4.理解初等函數(shù)在其定義的區(qū)間內(nèi)是連續(xù)的,會(huì)用連續(xù)性來求極限。

二、一元函數(shù)微分學(xué)

(a)導(dǎo)數(shù)和微分

1.理解導(dǎo)數(shù)與微分的概念,導(dǎo)數(shù)與微分的關(guān)系,導(dǎo)數(shù)的幾何意義,平面曲線的切線方程與法線方程,導(dǎo)數(shù)的物理意義,函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系。

2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的求導(dǎo)公式。

3.掌握隱函數(shù)求導(dǎo)法、對(duì)數(shù)求導(dǎo)法、參數(shù)方程確定的函數(shù)求導(dǎo)法,就能求出分段函數(shù)的導(dǎo)數(shù)。

  4.理解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的

image.png階導(dǎo)數(shù)。4.理解高階導(dǎo)數(shù)的概念,求簡單函數(shù)的
階導(dǎo)數(shù)。

5.掌握微分算法,求函數(shù)的一階微分。

(2)中值定理和導(dǎo)數(shù)的應(yīng)用

1.了解羅爾中值定理,拉格朗日中值定理,柯西中值定理,泰勒定理。會(huì)用羅爾定理證明方程根的存在性,會(huì)用拉格朗日中值定理證明簡單不等式。

  2.熟練掌握洛必達(dá)法則,會(huì)用洛必達(dá)法則求

image.png山東專升本高數(shù)考試大綱 山東專升本高數(shù)一二三的區(qū)別(圖5)
image.png型未定式的極限。2.掌握洛必達(dá)法則,用洛必達(dá)法則求待定型的極限

3.理解函數(shù)極值的概念,掌握判斷函數(shù)單調(diào)性和求導(dǎo)求函數(shù)極值的方法,利用函數(shù)單調(diào)性證明一些簡單的不等式,掌握求函數(shù)最大最小值的方法及其應(yīng)用。

4.我們可以通過導(dǎo)數(shù)來判斷函數(shù)圖的凹凸性,找到函數(shù)圖的拐點(diǎn)、水平漸近線和垂直漸近線。

3.一元函數(shù)的積分學(xué)

(a)不定積分

1.理解原函數(shù)和不定積分的概念,理解原函數(shù)的存在定理,掌握不定積分的性質(zhì)。

2.掌握不定積分的基本公式。

3.掌握不定積分分部代換積分的靠前、第二種方法。

4.理解一些簡單有理函數(shù)不定積分的解法。

(2)定積分

1.理解定積分的概念和幾何意義,理解可積條件。

2.掌握定積分的基本性質(zhì)。

3.了解積分的上限函數(shù),求其導(dǎo)數(shù),掌握牛頓-萊布尼茨公式。

4.掌握轉(zhuǎn)換積分法和定積分的分部積分。

5.掌握用定積分表示和計(jì)算一些幾何量(平面圖形的面積、旋轉(zhuǎn)體的體積、平行截面的面積都是已知的三維體積)。

4.向量代數(shù)與空之間的解析幾何

(a)向量代數(shù)

1.了解空之間的直角坐標(biāo)系,了解向量的概念及其表示,求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。

2.掌握向量線性運(yùn)算、向量量積、叉積的計(jì)算方法。

3.掌握兩個(gè)向量平行垂直的條件。

(2)平面和直線

1.會(huì)求點(diǎn)法語方程和平面的一般方程。會(huì)決定兩個(gè)平面的垂直和平行。

2.會(huì)找到點(diǎn)到平面的距離。

3.了解直線的一般方程,求直線的標(biāo)準(zhǔn)方程和參數(shù)方程。將確定兩條線(平行和垂直)之間的位置關(guān)系。

4.將確定直線與平面(垂直、平行、平面上的直線)之間的位置關(guān)系。

五、多元函數(shù)微積分

(一)多元函數(shù)微積分

1.理解二元函數(shù)的概念、幾何意義、極限和連續(xù)性,找到二元函數(shù)的定義域。

2.理解二元函數(shù)的偏導(dǎo)數(shù)和全微分的概念,我們會(huì)發(fā)現(xiàn)二元函數(shù)的全微分,了解全微分存在的充要條件。

3.掌握二元函數(shù)一階和二階偏導(dǎo)數(shù)的計(jì)算方法。

4.掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的解法。

  5.掌握由方程

image.png所確定的隱函數(shù)
image.png的一階偏導(dǎo)數(shù)的計(jì)算方法。5.掌握方程
一階偏導(dǎo)數(shù)的計(jì)算方法。

6.會(huì)找到二元函數(shù)的無條件極值。

(2)雙重整合

1.理解二重積分的概念、性質(zhì)和幾何意義。

2.掌握直角坐標(biāo)系和極坐標(biāo)下二重積分的計(jì)算方法。

不及物動(dòng)詞無窮級(jí)數(shù)

(一)系列號(hào)

1.理解常數(shù)項(xiàng)級(jí)數(shù)斂散性的概念。掌握級(jí)數(shù)收斂的必要條件,了解級(jí)數(shù)的基本性質(zhì)。

2.掌握正項(xiàng)級(jí)數(shù)收斂的比較判別法和比值判別法。

  3.掌握幾何級(jí)數(shù)、調(diào)和級(jí)數(shù)與image.png級(jí)數(shù)的斂散性。3.掌握幾何級(jí)數(shù),調(diào)和級(jí)數(shù),級(jí)數(shù)的斂散性。

4.掌握交錯(cuò)級(jí)數(shù)的萊布尼茨判別法,理解任意級(jí)數(shù)的絕對(duì)收斂和條件收斂的概念。

(2)冪級(jí)數(shù)

1.知道了冪級(jí)數(shù)的概念,我們就能求出冪級(jí)數(shù)的收斂半徑、收斂區(qū)間和收斂域。

2.了解冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項(xiàng)導(dǎo)數(shù)、逐項(xiàng)積分)。

3.冪級(jí)數(shù)的和函數(shù)將通過逐項(xiàng)求導(dǎo)和逐項(xiàng)積分得到。

  4.熟記

image.png的麥克勞林級(jí)數(shù),會(huì)將一些簡單的初等函數(shù)展開為
image.png的冪級(jí)數(shù)。4.記住
的冪級(jí)數(shù)。

七、常微分方程

(一)一階微分方程

1.了解微分方程的定義、階、解、通解、初始條件、特解。

2.掌握可分離變量方程的解法。

3.掌握一階線性方程的解法。

(2)二階線性微分方程

1.了解二階線性微分方程解的結(jié)構(gòu)。

2.掌握二階常系數(shù)齊次線性微分方程的解法。

二.考試形式和問題

一、考試形式

考試采取閉卷和筆試的形式。試卷滿分100分,考試時(shí)間120分鐘。

二、問題類型

試題可從以下類型中選擇:選擇題、填空題空題、真題或假題、計(jì)算題、證明題、應(yīng)用題。

山東省2020年普通高等教育高考

高等數(shù)學(xué)二級(jí)考試要求

ⅰ??荚噧?nèi)容和要求

本科目考試要求考生掌握必要的基本概念、基本理論,以及更熟練的操作能力。它主要考察學(xué)生的記憶、理解和應(yīng)用能力,為進(jìn)一步學(xué)習(xí)奠定基礎(chǔ)。具體內(nèi)容和要求如下:

一、函數(shù)、極限和連續(xù)性

(a)職能

1.理解函數(shù)的概念,掌握函數(shù)的表達(dá),會(huì)建立應(yīng)用問題的函數(shù)關(guān)系。

2.理解函數(shù)的有界性、單調(diào)性、周期性、奇偶性。

3.理解分段函數(shù)和反函數(shù)的概念,理解復(fù)合函數(shù)的概念。

4.掌握函數(shù)的四則運(yùn)算和復(fù)合運(yùn)算。

5.掌握基本初等函數(shù)的性質(zhì)和圖形,理解初等函數(shù)的概念。

6.理解經(jīng)濟(jì)學(xué)中幾種常見的函數(shù)(成本函數(shù)、利潤函數(shù)、需求函數(shù)、供給函數(shù))。

(2)限制

1.理解數(shù)列極限和函數(shù)極限的概念(包括左極限和右極限)。

2.了解極限的性質(zhì)和極限存在的兩個(gè)準(zhǔn)則(pinching準(zhǔn)則和單調(diào)有界準(zhǔn)則),掌握極限的四種算法,掌握兩個(gè)重要極限的使用

山東專升本高數(shù)考試大綱 山東專升本高數(shù)一二三的區(qū)別(圖12)求極限的方法。求極限的方法。

3.了解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法。為了理解無窮小量的概念及其與無窮小量的關(guān)系,我們將用等價(jià)無窮小量來代替求極限。

(3)連續(xù)性

1.理解函數(shù)連續(xù)性(包括左連續(xù)性和右連續(xù)性)的概念,會(huì)區(qū)分函數(shù)不連續(xù)性的類型。

2.掌握連續(xù)函數(shù)的性質(zhì)。

3.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性定理、最大最小值定理、中間值定理)。

4.理解初等函數(shù)在其定義的區(qū)間內(nèi)是連續(xù)的,會(huì)用連續(xù)性來求極限。

二、一元函數(shù)微分學(xué)

(a)導(dǎo)數(shù)和微分

1.了解導(dǎo)數(shù)的概念,可導(dǎo)性與連續(xù)性的關(guān)系,導(dǎo)數(shù)的幾何意義,求平面曲線的切線方程和法線方程。

2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的求導(dǎo)公式。

3.掌握隱函數(shù)的求導(dǎo)法和對(duì)數(shù)求導(dǎo)法。

  4.了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的

image.png階導(dǎo)數(shù)。4.理解高階導(dǎo)數(shù)的概念,求簡單函數(shù)的
階導(dǎo)數(shù)。

5.了解函數(shù)微分的概念,了解微分與導(dǎo)數(shù)的關(guān)系,找到函數(shù)的一階微分。

(2)中值定理和導(dǎo)數(shù)的應(yīng)用

1.了解羅爾中值定理,拉格朗日中值定理,柯西中值定理,泰勒定理。會(huì)用羅爾定理證明方程根的存在性,會(huì)用拉格朗日中值定理證明簡單不等式。

2.掌握洛必達(dá)法則,用洛必達(dá)法則去尋求

山東專升本高數(shù)考試大綱 山東專升本高數(shù)一二三的區(qū)別(圖14)型未定式的極限。不確定類型的極限。

3.掌握函數(shù)單調(diào)性的判別方法,理解函數(shù)極值的概念,掌握函數(shù)極值、最大值、最小值的求解及應(yīng)用。

4.我們可以通過導(dǎo)數(shù)來判斷函數(shù)圖的凹凸性,找到函數(shù)圖的拐點(diǎn)、水平漸近線和垂直漸近線。

5.理解邊際函數(shù)和彈性函數(shù)的概念及其實(shí)際意義,將解決簡單的應(yīng)用問題。

3.一元函數(shù)的積分學(xué)

(a)不定積分

1.理解原函數(shù)和不定積分的概念,理解原函數(shù)的存在定理,掌握不定積分的性質(zhì)。

2.掌握不定積分的基本公式。

3.掌握不定積分部分代換積分的靠前、第二種方法。

(2)定積分

1.理解定積分的概念和幾何意義,理解可積條件。

2.掌握定積分的基本性質(zhì)。

3.了解積分的上限函數(shù),求其導(dǎo)數(shù),掌握牛頓-萊布尼茨公式。

4.掌握轉(zhuǎn)換積分法和定積分的分部積分。

5.會(huì)用定積分計(jì)算平面圖形的面積,會(huì)用定積分解決簡單的應(yīng)用問題。

第四,多元函數(shù)微積分

(一)多元函數(shù)微積分

1.理解二元函數(shù)的概念和幾何意義,二元函數(shù)的極限和連續(xù)性的概念。

2.理解偏導(dǎo)數(shù)和全導(dǎo)數(shù)的概念,求二元函數(shù)的一階和二階偏導(dǎo)數(shù)。

3.掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的解法。

4.會(huì)求二元函數(shù)的全微分。

5.掌握方程式

山東專升本高數(shù)考試大綱 山東專升本高數(shù)一二三的區(qū)別(圖15)所確定的隱函數(shù)確定的隱函數(shù)

山東專升本高數(shù)考試大綱 山東專升本高數(shù)一二三的區(qū)別(圖16)的一階偏導(dǎo)數(shù)的計(jì)算方法。一階偏導(dǎo)數(shù)的計(jì)算方法。

6.會(huì)找到二元函數(shù)的無條件極值。

(2)雙重整合

1.理解二重積分的概念、性質(zhì)和幾何意義。

2.掌握直角坐標(biāo)系下二重積分的計(jì)算方法。

五、常微分方程

(一)了解常微分方程的定義,了解常微分方程的階、解、通解、初始條件和特解。

(二)掌握可分離變量微分方程和一階線性微分方程的解。

(3)會(huì)用常微分方程來解決簡單的應(yīng)用問題。

二.考試形式和問題

一、考試形式

考試采取閉卷和筆試的形式。試卷滿分100分,考試時(shí)間120分鐘。

二、問題類型

試題可從以下類型中選擇:選擇題、填空題空題、真題或假題、計(jì)算題、證明題、應(yīng)用題。

2020年山東省普通高等教育專升本招生考試

高等數(shù)學(xué)??荚囈?/p>

ⅰ。評(píng)估內(nèi)容和要求

本科目考試要求考生掌握必要的基本概念、基本理論,以及更熟練的操作能力。它主要考察學(xué)生的記憶、理解和應(yīng)用能力,為進(jìn)一步學(xué)習(xí)奠定基礎(chǔ)。具體內(nèi)容和要求如下:

一、函數(shù)、極限和連續(xù)性

(a)職能

1.理解函數(shù)的概念,掌握函數(shù)的表示,找到函數(shù)的定義域,建立應(yīng)用問題的函數(shù)關(guān)系。

2.理解函數(shù)的有界性、單調(diào)性、周期性、奇偶性。

3.理解分段函數(shù)和反函數(shù)的概念,理解復(fù)合函數(shù)的概念。

4.掌握函數(shù)的四則運(yùn)算和復(fù)合運(yùn)算。

5.掌握基本初等函數(shù)的性質(zhì)和圖形,理解初等函數(shù)的概念。

(2)限制

1.理解數(shù)列極限和函數(shù)極限的概念(包括左極限和右極限)。

2.了解極限的性質(zhì)和極限存在的兩個(gè)準(zhǔn)則(pinching準(zhǔn)則和單調(diào)有界準(zhǔn)則),掌握極限的四種算法,掌握兩個(gè)重要極限的使用

image.png求極限的方法。求極限的方法。

3.了解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法。理解無窮小量的概念及其與無窮小量的關(guān)系。

(3)連續(xù)性

1.理解函數(shù)連續(xù)性(包括左連續(xù)性和右連續(xù)性)的概念,會(huì)判斷函數(shù)不連續(xù)性的類型。

2.掌握連續(xù)函數(shù)的性質(zhì)。

3.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性定理、最大最小值定理、中間值定理)。

4.理解初等函數(shù)在其定義的區(qū)間內(nèi)是連續(xù)的,會(huì)用連續(xù)性來求極限。

二、一元函數(shù)微分學(xué)

(a)導(dǎo)數(shù)和微分

1.了解導(dǎo)數(shù)的概念,可導(dǎo)性與連續(xù)性的關(guān)系,導(dǎo)數(shù)的幾何意義,求平面曲線的切線方程和法線方程。

2.掌握導(dǎo)數(shù)的基本公式,復(fù)合函數(shù)的四個(gè)算術(shù)規(guī)則和求導(dǎo)方法。

3.掌握隱函數(shù)求導(dǎo)法和對(duì)數(shù)求導(dǎo)法,求分段函數(shù)的導(dǎo)數(shù)。

4.理解高階導(dǎo)數(shù)的概念,就會(huì)發(fā)現(xiàn)簡單函數(shù)的二階導(dǎo)數(shù)。

5.了解函數(shù)微分的概念,了解微分與導(dǎo)數(shù)的關(guān)系,找到函數(shù)的一階微分。

(2)中值定理和導(dǎo)數(shù)的應(yīng)用

1.理解羅爾定理和拉格朗日中值定理,掌握這兩個(gè)定理的簡單應(yīng)用。

2.掌握洛必達(dá)法則,用洛必達(dá)法則去尋求

  image.png型未定式的極限。不確定類型的極限。

3.掌握函數(shù)單調(diào)性的判別方法,理解函數(shù)極值的概念,掌握函數(shù)極值、最大值、最小值的求解及應(yīng)用。

3.一元函數(shù)的積分學(xué)

(a)不定積分

1.理解原函數(shù)和不定積分的概念,理解原函數(shù)的存在定理,掌握不定積分的性質(zhì)。

2.掌握不定積分的基本公式。

3.掌握不定積分部分代換積分的靠前、第二種方法。

(2)定積分

1.理解定積分的概念和幾何意義,理解可積條件。

2.掌握定積分的基本性質(zhì)。

3.了解積分的上限函數(shù),求其導(dǎo)數(shù),掌握牛頓-萊布尼茨公式。

4.掌握轉(zhuǎn)換積分法和定積分的分部積分。

5.會(huì)用定積分來計(jì)算平面圖形的面積。

二.考試形式和問題

一、考試形式

考試采取閉卷和筆試的形式。試卷滿分100分,考試時(shí)間120分鐘。

二、問題類型

試題可從以下類型中選擇:選擇題、填空題空題、真題或假題、計(jì)算題、證明題、應(yīng)用題。

,
以上是2020年山東省專升本對(duì)大學(xué)高等數(shù)學(xué)考試的大綱和要求??赐晁械拇缶V,你明白了嗎?一、二、三有什么區(qū)別?如果您有任何問題,請(qǐng)隨時(shí)咨詢我們的在線老師。



湖南專升本最新資料領(lǐng)取

部分內(nèi)容來源于網(wǎng)絡(luò)轉(zhuǎn)載、學(xué)生投稿,如有侵權(quán)或?qū)Ρ菊居腥魏我庖?、建議或者投訴,請(qǐng)聯(lián)系郵箱(1296178999@qq.com)反饋。 未經(jīng)本站授權(quán),不得轉(zhuǎn)載、摘編、復(fù)制或者建立鏡像, 如有違反,本站將追究法律責(zé)任!


本文標(biāo)簽: 山東專升本

上一篇:安徽大學(xué)江淮學(xué)院2020年專升本金融學(xué)考試大綱                  下一篇:山東專升本高數(shù)一考試大綱

湖南3+2 統(tǒng)招專升本

一鍵查詢